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Interaction of a shock wave with a mixing region 

By N. RILEY 
Department of Mathematics, University of Manchester 

(Received 25 June 1959) 

The interaction of a simple wave, in steady supersonic flow, with a two-dimen- 
sional mixing region is treated by applying Fourier analysis to the linearized 
equations of motion. From asymptotic forms for the Fourier transforms of 
physical quantities, for large wave-number, the dominant features of the 
resulting flow pattern are predicted; in particular it is found that a shock wave, 
incident on the mixing region, is reflected as a logarithmically infinite ridge of 
pressure. For two particular Mach-number distributions in the undisturbed flow, 
numerical solutions are obtained, showing greater detail than the results pre- 
dicted by the asymptotic approach. Amethod is given whereby the linear theory 
may be improved to take into account some non-linear effects; and the reflected 
wave, for an incident shock wave, is then seen to consist of a shock wave, 
gradually diminishing in strength, followed by the main expansion wave. 

1. Introduction 
The problem of the interaction of a shock wave with a boundary layer has, 

over the past few years, received considerable attention from both experimental 
and theoretical workers. By contrast, the problem of the interaction of a shock 
wave with a mixing region has received scant attention. Perhaps the most com- 
mon interaction of the latter type occurs when a supersonic jet emerges from a 
nozzle in which the pressure is less than atmospheric pressure, although an 
equally common but less obvious case is when a strong shock wave (i.e. strong 
enough to cause separation) interacts with a boundary layer. The separation 
point is then situated well upstream from the point of incidence of the initial 
shock which, consequently, is itself directly incident upon a layer of fluid in 
which the fluid velocity falls to zero, in the ‘dead-air bubble’, before the wall is 
reached, just as in a mixing region. The present problem can then perhaps also be 
considered as a special case of a shock-boundary-layer interaction. The main 
experimental results concerning interactions of shock waves with mixing regions 
are in the form of Schlieren photographs of supersonic jets, such as those taken 
at the Manchester University Fluid Motion Laboratory by Johannesen (1957). 
The difficulties in obtaining measurements by mechanical methods in these small 
regions are very great, owing to the relatively large disturbance created by any 
instrument which might be placed in the flow. 

Important theoretical contributions to the problem of the interaction of a 
shock wave with a boundary layer have been made by Lighthill (1950, 1953). He 
considers an ideal fluid in which viscosity and heat conduction are neglected and 
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replaces the boundary layer by a shear layer in which the Mach number falls from 
its main stream value 2M, to zero (Lighthill 1950) at the wall, or to M2 (Lighthill 
1953) when an inner viscous sublayer is considered. The equations of plane steady 
flow are used and products of small quantities arising from small disturbances to 
the basic parallel flow are neglected. In  the present problem, concerning the 
interaction of a shock wave with a mixing region, the same procedure is adopted, 
the mixing region being represented by a semi-infinite layer of vorticity in which 
the Mach number varies continuously from its main stream value MI to zero 
asymptotically at  large distances from the main stream. The flow is assumed to 
be parallel everywhere. Owing to the absence of any solid boundary, there is no 
need to consider any inner viscous sublayer in this problem. 

Having substituted this shear layer for the mixing region, it would hardly seem 
fair to refer to the mixing region as such, as in fact no mixing is taking place; 
consequently the ‘mixing region’ will be referred to as the ‘non-uniform ’ region. 
The equations of motion are formulated in terms of derivatives alas and 31th 
along and at right angles to the streamlines, with the flow direction and a 
suitably defined pressure coefficient as dependent variables depending only on 
the Mach-number distribution, and not on the separate velocity and temperature 
distributions. If the disturbances to the uniform parallel flow are small and if, 
in the undisturbed state, the fluid is flowing in a direction parallel to the x-axis, 
then to a first approximation the derivatives alas and alan may be replaced by 
a/ax and a/ay and the Mach-number distribution by its undisturbed value. 

The Fourier transform of the pressure coefficient is defined and an ordinary 
differential equation which i t  satisfies is derived. Asymptotic solutions of this 
equation, with a general undisturbed Mach-number distribution, are obtained 
for large wave-number in the subsonic region, the solutions being continued 
across the sonic line by a method due to Langer (1931). In  this way asymptotic 
forms of the Fourier transform of the pressure coefficient, reflected wave and 
flow direction are obtained, which in turn enable us to pick out the singularities in 
these quantities. It is thus shown that an incident wave in the form of a shock 
wave is reflected as a pressure ridge, as in Lighthill’s boundary-layer theory. 

Using a specific Mach-number distribution in the non-uniform region, it has 
been found possible to solve the equation for the Fourier transform of the 
pressure coefficient exactly. Using this solution it is not difficult to show that the 
upstream influence (i.e. the distance upstream which the disturbance penetrates) 
is only of the order of one layer thickness. The reflected wave for this Mach- 
number distribution has been calculated using numerical methods, analytical 
methods proving too intractable. When the incident wave is in the form of a 
shock wave the reflected wave is seen to consist of a very narrow region of com- 
pression followed by a broader region of expansion; photographic evidence in 
support of this is available. From the reflected wave for an incident shock, it is 
shown to be possible to calculate the reflected wave for an incident Prandtl- 
Meyer expansion fan which is found to consist of a slight further expansion 
followed by a region of compression. An interaction of the latter type occurs when 
a supersonic jet, in which the pressure is greater than atmospheric pressure, 
exhausts into the atmosphere. 
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In  the linear theory, first approximations to the physical quantities are 
obtained, but the characteristic network is left unchanged as two sets of parallel 
lines. This is the fundamental failure of linear theory, since the characteristics 
along which the physical quantities are predicted are incorrectly placed. Several 
methods (Whitham 1952; Lighthill 1957; and Kantrowitz 1958) are available for 
obtaining a correctly modified first approximation to the flow pattern, and the 
method used here, anticipated by both Lighthill and Kantrowitz, is outlined in 
an appendix. The flow is assumed isentropic, which means that third-order terms 
due to entropy changes at the shock are neglected, so that any shock waves 
occurring must not be too strong. The mass flow in a given direction is examined 
and in the isentropic-flow theory this becomes muIti-valued under a compressive 
disturbance. It is shown that a shock wave, inserted so as to leave the total mass 
flow unaltered, renders the mass flow single-valued though discontinuous and 
satisfies all the equations governing the complete flow pattern, under the isen- 
tropic-flow limitation. If we were to make the further assumption that products 
of small quantities are to be neglected, we should recover the method outlined by 
Whitham (1952). The resulting flow patterns, displayed graphically, show very 
clearly how the reflected expansion wave interacts with the adjacent shock wave, 
gradually weakening it. 

2. Equations of motion 
The equations of motion governing a perfect gas, with constant adiabatic 

index y and zero viscosity and thermal conductivity, which flows in a steady two- 

an I dimensional pattern, are a 
( p u )  +pu-- = 0, 

expressing conservation of mass, momentum and entropy along a streamline, 
respectively. The derivatives alas and a/an are derivatives along the streamlines 
and normal to them, respectively. The velocity is denoted by its magnitude u and 
direction 0 which is the angle a streamline makes with some fixed direction, say 
the x-axis. The pressure p and density p are related to a the local velocity of 
sound by a = (yp/p)*.  Elimination of aulas, a p / h  between the first two and last 

of equations (1) gives aP ae 
(1-NZ)- = pu2- 

as an’ 
where M = u/a is the local Mach number. If we now define a pressure coefficient 
4 = log (p/pl)1’y3 where p ,  is some constant pressure, then equation (2) and the 
third of equations (1) reduce to the simple form 

21-2 
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Suppose the flow pattern consists of a basic parallel flow in the x-direction upon 
which is superimposed a small disturbance, then the streamlines will only be 
displaced by a small amount from their undisturbed state, and so to a first 
approximation we may take alas = ajax and a/an = slay, giving 

(4) 

the pressure coefficient If p ,  is taken to be the pressure in the basic flow then 
a = ( p  -p l ) / yp l .  In  the basic flow we assume that the Mach number distribution 
M(y) is a function of y only, continuous for all y and decreasing in 0 2 y > - oc) 
with M(y) -+ 0 as y -+ - co and M(y) = M, > 1 for y 2 0. We see then that the 
distribution of pressure coefficient m and the streamline pattern (deducible 
from 8) depend only on the distribution of Mach number M(y) and not on the 
separate velocity and temperature distributions. The equation for rn obtained by 
eliminating 0 from equations (4) is 

- 

If the cause of the disturbance is taken as a simple plane wave incident on the 
non-uniform region from outside, then, by the theory of small disturbances to a 
uniform supersonic stream, m must, in y > 0, take the form 

m =f (x+A4)+g(x-B1), (6) 

where f represents the incident wave, g the reflected wave, and /3 = (M!-  1)t. 
The function g is what we particularly wish to determine in the present 
investigation. 

The boundary condition at y = 0 is that the pressure field be continuous with 
the field given by ( 6 ) ;  this may be written 

providing that the derivatives are continuous across y = 0. Lighthill (1950) has 
shown that they will be so as long as M(y) is continuous. To complete the formula- 
tion of the problem we need another boundary condition, and it would appear 
reasonable to take this as 

(d,-t-m -+ 0. ( 8 )  

Equation ( 5 )  must then be solved under conditions (7) and (8). When the 
pressure field has been determined the reflected wave can be derived from the - 

equation 

and the flow direction 8 from the second of equations (4 ) .  
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3. Fourier analysis 
I f f@) can be expressed as a Fourier integral 

f (x) = JIw eik"P(k) dk,  

then we shall seek solutions for w, g and 0 in the form 

w(z, y) = Jym eikzII(k,y) dk,  

m 

g(z) = [ eikxB(k)dk,  
J -m 

8(x, y) = [" eikx H(k ,  y) dk. 
J -m 

If a substitution for m, from (1 l), is made in equation (5) ,  the following ordinary 
differential equation for Il is obtained: 

the boundary conditions (7) and (8) becoming 

nJk, O > + i k p I ( k ,  0) = 2/3ikP(k), 

rI(k,y)+O as y-+ -a. 

For convenience, when model profiles are chosen, solutions of equation (14) are 
better expressed in terms of the basic solution no(,%, y), where 

nO(k,O)  = 1, IIo(k,y) -+ 0 as y i -m. (17) 

Then, to satisfy the boundary conditions (15) and (16), we must have 

and from (9), ( l l ) ,  (12) and (18) the Fourier transform of the reflected wave is 
given as G(k)  = [ik/3II(k, 0) -IIv(k, O)]/2/?ik 

Also, we have the Fourier transform of the flow deflexion, from the second of 
equations (4) and equations (1 l ) ,  (13) and (18), given as 

Except for very special Mach-number distributions M ( y ) ,  equation (14) is very 
difficult to solve analytically. For the moment we shall confine ourselves to 
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approximate solutions of equation (14) for large values of the parameter k, for, 
by now, it is well known how the singularities of a Fourier integral can be 
deduced from the asymptotic behaviour of the integrand (see e.g. Lighthill 1958). 
The main features of the flow can be predicted in this way. Solutions for a 
particular form of M ( y )  will be discussed in $5.  

4. Asymptotic solutions 
In  order to estimate the asymptotic behaviour of II(k, y), we must refer to some 

of the results of a theory first fully developed by Langer (1931). The results which 
we shall need are set out briefly in appendix A; a more detailed summary is given 
by Lighthill (1  950). 

Considering now equation (14), we know from the ‘W.B.K.’ theory that 
asymptotic solutions as Ikl -+ 00 must be a combination of the two forms 

M(y) (1 - M2(y)}-$ efiks, (21) 

where 

and y = y, is the sonic line in the undisturbed flow such that M(y,) = 1. In  the 
subsonic region, i.e. in the interval -m < y < y,, we have M ( y )  c 1; hence 
8 = - i  Is1 from (22) and, from (21), any asymptotic solution as Ikl -+ m must be 
a combination of ’ 

where 181 -+ mas y -+ -GO. Clearly then, to satisfy the second of conditions (17) 
we must take for the asymptotic form of IIo(k, y), as Ikl+ 00, in the subsonic region 

M(y) (1 - M2(y)}-’e*kIsl, (23) 

H O W Y  9) - A ,  M ( y )  (1 - M2(y)1-* exp [ - k I4 s€P kl 
= A ,  ~ ( y )  { 1 - ~ 2 ( y ) } - &  [ ~ ( k )  e-kIsl+ H (  - k) ek~sl], (24) 

where sgn k = k/lkl and H ( k )  = 0 for k < 0, H ( k )  = 1 for k > 0,  and A, is, as yet, 
an arbitrary constant. 

Writing IIo(k, y) as a combination f,(k) ul(y) + f 2 ( k )  u2(y) ,  where u1 and u2 are 
given in equation (62) by Langer’s theory, enables us to determinef,(k) and$,(&) 
and hence continue the solution into the supersonic region y > y,. Thus, since 
8 = -i18], 

giving 

(25) 1 f,(k) = 3 [ H ( k )  k i + H (  - k )  (-k)Q], 

f 2 ( k )  = 3 [ H ( k )  kQ + H (  - k) ( - k)Q]. 

4 3  

4 3  

Withf,(k), f 2 ( k )  given by (25), we have 
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giving, as the solution in the supersonic region, as Ikl -+ 03, 

M ( y )  {M2(y) - I}-$ cos (ks - in sgn k) 
M,(M? - 1 )-$ cos (kv - in sgn k) ' Y) 

where CT = s(0) = 

to satisfy the first of conditions (17). 

contain a factor k and discarding terms of lower order, as Ikl -+ co, 

{M2(y) - I)4dy and the arbitrary constant has been chosen 

Now from (27) and (19) we have, retaining only those terms in IIoY which 

l 

G(k)  N P(k) e-2ikui sgn k.  (28) 

And so, if the incident wave represents a simple discontinuity in pressure, of 
magnitude yplA on the characteristic x+py = 0, so that 

giving, from (28), 
A G ( k )  - e--2ikg. 

24kl 
Equation (31) shows us that 

(32) 
A g(x-Py) = --log Ix-py- 2 ~ ~ 1  +(continuous function), 

indicating that the reflected wave possesses not a simple discontinuity but a 
logarithmic singularity on the characteristic x - p y  - ~ C T  = 0. Although a positive 
logarithmic infinity of pressure is postulated in the reflected wave, this cannot be 
realized physically, and may be interpreted (see Lighthill 1950) as a pressure 
ridge, that is, as a rapid compression followed by a rapid expansion. 

The reflexion of an incident wave of the form given by (29) can perhaps be seen 
more clearly by examining the pressure coefficient w(x, y) in the supersonic part 
of the non-uniform region y1 < y < 0. From equations (18), (27) and (30), we 
have, as Ikl +00, 

n 

showing that w(x, y) has a discontinuity of magnitude 

whilst 

is continuous on x = v + s. The incident wave then, on entering the non-uniform 
region at ( 0 , O )  is propagated along the characteristic with slope 

dx/dy = - { M 2 ( y )  - I}&, 
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that is along the line x = (T - s, until the sonic line y = y, is reached at  x = IT; the 
wave is then reflected along the other characteristic through this point, x = (T + s, 
emerging from the non-uniform region at the point ( ~ C T ,  0 )  and proceeding along 
the characteristic x = By + ZIT as we saw in (32). The singularity of the pressure 
coefficient w on the sonic line itself may be estimated from equations (18), (25) 
and (64), since we know that IT,(k, yl) - fl(k) u,(y,) +f,(k) w2(y1). In  this way we 
see that m(x, yl) possesses a singularity of the form 

5n 
Ix-(TI-4 ( 34) 

It is worth noting here that if the incident wavef(x) consists of one or more 
simple discontinuities in the pressure gradient, then no infinity of pressure in the 
reflected wave arises. This can be seen by observing that awlax satisfies the same 
differential equation and boundary condition, when y+  - 00, as w itself. Thus, if 
in the incident wave awlax has a discontinuity A,, then the reflected wave will 
possess a region of logarithmically infinite pressure gradient. Again, if the 
incident wave possesses a discontinuity -Al in awlax followed by one of AI 
representing a Prandtl-Meyer expansion, then the reflected wave has a region of 
large negative pressure gradient followed by one of large positive pressure 
gradient. Integration to find w shows that a Prandtl-Meyer expansion is 
reflected as an expansion followed immediately by compression. 

Although the flow direction is directly deducible from the second of equa- 
tions (4), it  is interesting to investigate it by methods similar to those developed 
above. Consider, first, the flow in the supersonic part of the non-uniform region 
when the incident wave is given by (29). In  this region the asymptotic form of the 
Fourier transform of the flow deflexion, given by equations ( Z O ) ,  (27) and (30), as 

The first term in (35) indicates that on crossing the characteristic x = (T - s (along 
which the incident wave lies) the flow is deflected by an amount 

(M2, - l)t { M y  y ) - l)t 
2 1  M(Y 1 

-A 2 

agreeing with the weak wave deflexion -A(l@- l)&/M2, at y = 0. The second 
term in (35) shows that, on crossing the characteristic x = (T+s,  the flow is 
subjected to tl, logarithmically infinite deflexion, as may be expected when a 
logarithmically infinite pressure is involved. 

In  the subsonic region y < y,, equations (20), (24) and (30) give us, as [kl +00, 

Neglecting the factor e--ikllsl for the moment, we see that the fluid is violently 
disturbed in the neighbourhood of x = (T, the point on the sonic line at  which the 
incident wave is reflected, as we may have imagined. The effect of the factor 
e-lkl Is1 is merely to smooth out, over a distance of the order of 181, the other 
features present. 
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Both equations (35) and (36) imply that the flow along the sonic line y = y1 does 
not undergo any discontinuous change in direction. That this is so can be shown 
by examining the singularities of B(z, y) along the sonic line. From equations (20) 
and (30) we have 

H(k,yl) = x2110,(k,y1)~~s (kc~-fnsgnk)exp [-ikv+$nisgnk]. (37) 

Substituting for IIo,(k, yl) from (25) and (64) in (37), and performing the trans- 
formation, shows that on the sonic line B(x, y) contains no singularity worse than 

A 

12 
Iz-c~l t  

12 

indicating that the flow along the sonic line suffers no discontinuous change in 
direction. 

5. Solution with model profile 
As we have seen, in Q 4, it  is possible to examine the main features of the flow by 

finding asymptotic forms, as lkl -+ co, for the Fourier transforms of the reflected 
wave g ,  the pressure coefficient w and the flow direction 8, and hence picking out 
the singularities in these quantities. This was achieved without specifying the 
Mach-number distribution M ( y )  uniquely. We shall now, using a specific Mach- 
number distribution, examine the afore-mentioned quantities in more detail. 

Let the Mach-number distribution in the non-uniform region be given by 

M ( y )  = MleAy, (38) 

where A is a positive constant. This satisfies the conditions imposed on M ( y )  in 
$ 2 .  Before substituting for M ( y )  in equation (14) from (38), it is convenient in 
this case to transform the independent variable in (14) from y to M ( y ) .  We then 

(39) 
a 2 r I  dl l  Mr2(y)dII  

dM M ( y )  dM 

have 
M”(y)  z2 + M ” ( y )  - - 2 - __ + k2{M2(y)  - 1 ) l l  = 0, 

the primes denoting differentiation with respect to y. Putting M ( y )  = MleAy, 
equation (39) becomes 

1 H”--II’+- I--  ll = o ,  
M :2( k2) 

where the primes now denote differentiation with respect to M .  If we now put 

II = z u ( z ) ,  

where z = M k / A ,  
the equation satisfied by u(z )  is 

. Z ~ U ” + Z U ’ + { Z ~ - [ ~ + ( ~ / A ) ~ ] } U  = 0, (43) 

the primes denoting differentiation with respect to z. Equation (50) is Bessel’s 
equation, and hence the solution of (40) satisfying conditions (17) is 
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In  the general case of an arbitrary Mach-number profile i t  has not been found 
possible to say anything about the upstream influence of the disturbance, i.e. how 
far upstream of the characteristic x + py = 0, along which the incident wave lies, 
the disturbance in the non-uniform region penetrates. In  the analagous problem 
of shock-wave-boundary-layer interaction, Lighthill (1953) has shown that, even 
for non-separating boundary layers, the upstream influence of a shock wave 
extends some tens of boundary-layer thicknesses ahead of the point of incidence. 
It will be shown that in the present case, when the Mach-number variation across 
the non-uniform region is given by equation (38), the upstream influence is 
negligible, as we may expect in the absence of a wall. 

Sincef(x) = 0 for x < 0, the transform P(k) = (277)-l e-ikxf(z)dx is regular 

in the lower half-plane. Then the only singularities of n(k, y) are poles a t  the zeros 
of the denominator of equation (18). Hence, whenever x < 0, the function w(x, y) 
may by (11) be expressed as - 277i times the sum of the residues of R ( k ,  y) eikx at 
the zeros of the denominator of (18) in the lower half-plane. Since only the lower 
half-plane is to be considered it is convenient to put k = - iK, also, as i t  is unlikely 
that the upstream disturbance will be wavy, we shall confine ourselves to real and 
positive K.  

Before proceeding further we shall now introduce a length 6, to be known as the 
‘mixing region thickness ’, such that at y = - 6 the velocity has fallen to only 1 % 
of its free-stream value M,. Thus, 

Em 

M,e-Aa = O.OIMl, 

giving A 2 4.61/6. (46) 

Now, since w(z, y) = - 2ni R,(y) eKnx, 

the smallest K ,  ( = K,, say), will give an estimate of how far upstream the 
disturbance penetrates. Defining a = K J A ,  equation (46) shows that 

03 

n-1 

eKix = exp [(4.Sla/B)x], (47) 

and hence, if a 2 1, equation (47) shows that the disturbance upstream of the 
incident wave is effectively damped out within one ‘mixing region thickness’. 
This means that to show the upstream influence is negligible is to show that no 
zeros of the denominator of equation (18) lie in the range 0 < K / A  < 1. We are 
concerned then with solutions of the equation 

(48) 

where IIo(k, y) is given by equation (44). On putting k = - iK, equation (44) 
becomes 

(49) 

rI%( - iK, 0) + KPl-I0( - iK, 0) = 0, 

no = Q, eAV14[1-m/AP1 w-1 eAvK/A 1, 
where Ql = [~411-m/API (JflK/A)l-l. 
If we now put [l - (K/A)2]4 = v, MIK/A = 7, 
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substitution of (49) into (48) gives, as the equation to be solved, 

331 

or (53) 

Now, as has been explained above, the object is not to obtain explicit solutions of 
equation (53) but is rather to obtain the negative result that no solution exists in 
the range 0 < KIA c 1, i.e. in 0 < 7 < Hl. It can be shown that 

where both a,, bm > 0 ;  hence, in the range of 7 under consideration, the last three 
terms of (53) are never less than zero, and so equation (53) has no roots in this 
range. We may conclude that the upstream influence is negligibly small. 

Although analytic solutions of equation (14) have been found when the Mach- 
number distribution is given by (38), it  has not been found possible to integrate 
equation (12) analytically to obtain the reflected wave. However, using numerical 
methods in conjunction with a high-speed electronic computer, the form of the 
reflected wave, for a particular free-stream Mach number Ml = JZ, has been 
found both when the incident wave is a simple discontinuity representing a shock 
wave and when the pressure gradient of the incident wave contains simple 
discontinuities representing a Prandtl-Meyer expansion fan. For an incident 
shock wave, the reflected wave was expressed, from (12) and (19), as 

where Y = A y  and P ( k )  is, from (29), given by 

P ( k )  = - 8 ( k ) - -  ” (  2 2 i k ) ’  

where 6(x)  is the Dirac delta function such that 8(x)  = 0, x + 0 and 

f ( x )  S(z) dx = f ( 0 )  for any xo > 0. E. 
The function IIou(k/A, O ) ,  occurring in (55), was obtained by numerically inte- 
grating (14) with the Mach-number distribution given by (38), taking Nl = 42. 
The reflected wave thus obtained is given in figure 1, where A-lg(x) is plotted 
against A x ,  showing the very narrow region of compression followed by a broader 
region of expansion, the overall drop in pressure being of magnitude y p l A .  In  
figure 2 the reflected wave, due to an incident shock wave, both for the Mach- 
number distribution given by (38) and for the distribution M ( y )  = Ml e-Anye with 
Ml = 42,  are compared by plotting A-lg(x) against x/8,  where 8 is the mixing 
region thickness. The comparison shows that the form of M ( y ) ,  beyond certain 
basic requirements, is not critical in determining the reflected wave. If the 
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incident wave is a Prandtl-Meyer expansion fan, represented by a discontinuity 
- yp,A/l  in the pressure gradient followed by a further discontinuity yplA/ l ,  
where I is the length of the expansion and the overall drop in pressure is yp lA ,  
then, as we have seen earlier, since h j a x  satisfies the same equation and 
boundary conditions as a, the pressure gradient in the reflected wave is given as 
a linear combination of two reflected waves of the type shown in figure 1. The 

\ I I I 

- 0.5 0 0.5 1.0 1.5 
Ax 

FIGURE 1. Reflected wave when the incident wave represents a shock wave. 

FIQIJRE 2. Comparison of the reflected wave due to an incident shock wave when 
(a) M ( y )  = ,heA#, -* , (b )  M ( y )  = JZe-A'~', ----. 

reflected wave is then obtained by simple integration. The reflected wave due to 
such an incident wave in the special case AZ = 1 is shown in figure 3. This shows 
that there is, initially, a slight further drop in pressure followed by a sharp rise in 
pressure, the overall pressure rise being yp, A. 

The Schlieren photograph shown in figure 4 (plate 1) is an example in which a 
plane shock wave, strong enough to cause separation, is incident on a boundary 
layer. The boundary layer is fully separated at the point where the incident shock 
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meets it, and the wave reflected there is seen to consist of a shock wave preceding 
a broad expansion wave. This shock wave loses its identity when it becomes coin- 
cident with the main reflected wave. Further Schlieren photographs (Johannesen 
1957) show an axisymmetric jet emerging from a nozzle at a pressure less than 
atmospheric; in these the shock wave starting at the nozzle is incident on the 
mixing region and is reflected mainly as an expansion wave. On closer examina- 
tion, however, remembering that we are looking through an axisymmetric jet, 
a thin dark line representing a narrow region of compression is seen immediately 
before the main expansion wave. Although the theory given above is for the two- 
dimensional case, we may expect the results, including the presence of such a 
region of compression, to hold qualitatively in the axisymmetric problem. These 
photographs do then provide evidence in favour of the theory given above. 

FIGURE 3. Reflected wave when the incident wave represents an expaneion fan. 

6. Improved linear theory 
All the results obtained so far in preceding sections have been obtained using 

ordinary linearized theory; that is, in a uniform two-dimensional supersonic flow 
in which the two sets of characteristics are two sets of parallel straight lines, 
discontinuities to represent incident waves have been fitted on one or more of 
these characteristics pointing upstream, giving rise to a reflected wave situated 
along other characteristics pointing downstream, all the characteristics remaining 
unchanged. This failure of linear theory is fundamental, since regions in which 
shock waves occur are regions where the characteristics have run together and 
overlapped to form a limit line. The method by which we shall find the position 
of the shock wave in such a region is given in appendix B, which should be read in 
conjunction with the following discussion. For simplicity we shall only consider 
the flow around the reflected waves, shown in figures 1 and 3, and only in the region 
of uniform flow. The supersonic part of the non-uniform region will be very thin 
and errors introduced by ignoring it will only be significant at  large distances from 
the non-uniform region. Furthermore, since all physical quantities have been 
obtained by neglecting products of small quantities, we shall here neglect such 
terms by using an approximation to tan (p + O ) ,  although the method outlined in 
appendix B allows products of small quantities to be retained. 

Thus, taking 
(57) 
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where sgn f = + 1 if the incident wave represents a shock wave with pressure rise 
ypl A, and sgn f = - 1 if the incident wave represents a Prandtl-Meyer expansion 
with overall drop in pressure yplA, we have, from (4), 

- dx, 
R 

hence (58)-- 

Also, from Bernoulli's equation, neglecting products of small quantities, it  can 
be shown that 

I I I 

1.0 2.0 3.0 40 
Ml 

FIGURE 5. The coefficient a(M,) occurring in equation (60) (y = 1.4). 

Thus, along the correct characteristic z(x,y) = const., we have from (58), (59) 
and (65) 

(60) 
dx 
- = - a ( A  sgn f + g(z)} 
dY 

approximately, where a = &3-l{(y - 1) M ;  + 2)  +P is shown in figure 5. If the 
value of z on a characteristic is taken as the value of (x - Py) at the point where the 
characteristic meets the line y = 0, equation (60) can be integrated to give 

x = fiy - &{A sgn f + g(z)}  y + z. (61) 

Having found the characteristics, the mass-flow function h(p)  can be most 
easily determined along a line x = const. by observing the value ofp at  each point 
of the line where it is cut by a characteristic. Figures 6 and 7 show the mass flow 
function at  different stations when the reflected wave is due to an incident shock 
and Prandtl-Meyer fan, respectively, with A = 0.1. In  each case the shock wave is 
supposed to emerge from the non-uniform region at the point (0 ,O) .  The associated 
flow patterns in figures 8 and 9 show very clearly the regions of compression, 
where the characteristics close together, and the regions of expansion where the 
characteristics spread out fanwise. It is important to note that now, in the 
reflected wave due to an incident shock wave, the only point where the pressure 



Interaction of a shock wave with a mixing region 335 

is infinite is at (0, 0 ) ,  elsewhere along the reflected shock the rise in pressure is 
finite, decreasing to  zero under the influence of the neighbouring expansion fan. 
This removes the main peculiarity of the original theory, and makes what is left 
more satisfactory and credible. 

10 

AY 
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1 
1 

- 5  
0 1.05 1.00 1.05 1.00 1.05 

PulPmuw P I P  00% 00 PuIPcGuw 
FIGURE 6. The mass flow at  different stations when the incident wave is a shock wave. The 
horizontal line cutting off lobes of equal area indicates the position of the reflected shock 
wave (MI = 42, A = 0.1). 

AX = 7.5 Ax = 10 

FIGURE 7. The mass flow at different stations when the incident wave is an expansion fan. 
The horizontal line cutting off lobes of equal area indicates the position of the reflected 
shock wave (HI  = 42, A = 0.1). 
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FICJURE 8. The flow pattern for the reflected wave when the incident wave is a shock wave. 
The shock wave in the reflected wave is indicated by the thicker line (MI = 42, A = 0.1). 

1 

0 
- 1.5 - 1.0 -0.5 0 0.5 

A(x-Y) 
FIGURE 9. The flow pattern for the reflected wave when the incident wave is an expansion fan. 
The shock wave in the reflected wave is indicated by the thicker line ( M ,  = J2, A = 0.1). 

Appendix A 
The results of Langer’s theory used are briefly summarized here. 

let p ( y ) ,  q(y )  and r ( y )  be twice differentiable in yo < y d y 2 .  Let q(y)  < 0 in 
yo < y < y1 and q(y)  > 0 in y1 < y d y2, while q’(yl) > 0. Then two asymptotic 
solutions, valid in yo < y < yz as I kl -+ co for y =k y1 are 



b’l(:tTItE 1 (l)latcx 1 ) .  Shorlc wave incident on a two-dimensional boundary hyt,r 
causing separation. 
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If a special asymptotic solution is determined in either of these subintervals then 
it can be expressed in terms of u1 and u2 and hence extended into the other sub- 
interval. In  the theory of $ 4 ,  y = y 1  is seen to correspond to the sonic line and the 
method described here is used to extend solutions of ( 1 4 )  across this line. 

Appendix B 
The main fault that Whitham (1952) finds with linear theory is that although it 

gives a correct first approximation everywhere for any physical quantity on a 
characteristic, the characteristics themselves are incorrectly placed. From the 
physical quantities given by linear theory, Whitham calculates a first approxi- 
mation to the correct characteristics, and, using the condition that when products 
of small quantities are negligible the shock bisects the pair of characteristics 
which meet it a t  any point, shows how the flow pattern can be completely deter- 
mined. More refined methods of determining the flow pattern have been 
described by Lighthill (1957) and Kantrowitz (1958),  and the method outlined 
below is foreshadowed by both these authors. The method, like Whitham’s, can 
be criticized for assuming the discontinuous character of the solution in advance, 
but, since the only approximation to be made is that the flow is isentropic, the 
method is more accurate than Whitham’s. 

Assuming isentropic flow, we have that on the characteristics which point 
downstream in a two-dimensional flow 

dY 
- = tan (p + O),  ax  

where p is the local Mach angle. Since, in isentropic flow, p is constant along a 
characteristic and 8 is a function of the Mach angle we can write (65 )  as 

y - x tan (p + 8)  = const. 

Pulp, urn = Pq COB elPm qm, 

(66 )  

(67 )  

the subscript co referring to some standard state of the flow. Now 0 = f ( p )  -f(pm) 
and pq/pmqm = F ( p ,  p,) and so we may write (67 )  as 

Consider now the flux of mass parallel to the x-axis 

Pulpmum = ‘ (P ,  pm), (68 )  

and h ( p ,  p,) will be known as the ‘ mass-flow function ’. It may be shown that for 
a given p, the mass-flow function is an increasing function of p, and when p, = &T 

figure 10 shows h as a function of p. 
22 Fluid Mech. 7 
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Now, since on a characteristic 

y - x tan (p+ 0)  = yo- xo tan (p + O), 

h(x, Y) = h(Z,> Yo). 

W ,  y) = h[xo:,, y + (xo - x) tan (p + 41, 

i t  follows that 

From (69) we may write equation (70) as 

Y 

411 
FIGURE 10. B11aas flow function h(p) when ,urn = $7~. 

Y 

FIGURE 11. Typical mass-flow curve showing 
breakdown of uniqueness. 

FIGURE 12. Typical non-unique mass- 
flow curve with horizontal line cutting 
off lobes of equal area indicating the 
position of the shock wave. 

and SO if the mass-flow function is known at any station xo, for all y, then equa- 
tion (71) enables us to find it at any other station 5. Since p is an increasing 
function of the pressure, equation (71) indicates that if a disturbance to the 
uniform flow is compressive, and if at  xo the mass-flow function is a single-valued 
function of y, for some x > xo uniqueness breaks down and the mass-flow function 
becomes multi-valued as in figure 11. Obviously this state of affairs cannot exist 
physically, and a discontinuity representing a, shock wave must be inserted on 
the mass-flow curve in order that the mass flow may remain sin.gle valued. Since 
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the area beneath the curve represents the mass flow, the discontinuity must be 
introduced so as to leave the total area under the curve constant, because the 
total mass flow cannot change as a result of the appearance of a shock wave. As 
shown in figure 12 this is achieved by letting the discontinuity cut off lobes of 
equal area on the mass-flow curve. The shock wave first develops where the 
tangent at the point of inflexion of the mass-flow curve becomes perpendicular 
to the y-axis under this shearing process. 

Whitham’s theory may be easily deduced from the above by noting that if we 
neglect products of small quantities then we can write 

tan&++) = tanp,+K(h- l), (721 

and so, if the mass-flow function is known at any x, then, as equation (72) shows, 
it may be deduced at any other value of x by a simple linear shearing process. 
Since this shearing process conserves areas it may be noted that if, on the mass- 
flow function curve even when single-valued, lines are inserted cutting off equal 
area lobes on the curve then further downstream, each of these lines, in turn, will 
become perpendicular to the y-axis cutting off equal area lobes as we require. 
And so if, on a given mass-flow curve, lines are drawn cutting off lobes of equal 
area, then the complete flow pattern can be deduced since the pair of charac- 
teristics which pass through the points corresponding to the end-points of each 
line meet on the shock wave. This is, in effect, the rule given by Whitham (1962). 

The author is indebted to Prof. M. J. Lighthill for his help and encouragement 
throughout the preparation of this paper, also to Dr N. H. Johannesen for 
permission to use the photograph shown in figure 4, plate 1. 
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